

Originale Fachhochschulreife 2020

Hauptprüfung-Mathematik

Hilfsmittel: WTR und Merkhilfe

Paul Fansi

www.faacademy.de

	Ì
F	ľ

		Hauptprüfung	
		Aufgabe 2	Seite 1/2
			Punkte
Gege	eben ist die Funktion f mit $f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 - x^2, x \in \mathbb{R}$. Das Sch	aubild ist K_f .	
2.1	Berechnen Sie die Koordinaten der Hoch- und Tiefpunkte von F	ζ_f .	
	Zeichnen Sie K_f für $-3 \le x \le 2$.		9
2.2	Ermitteln Sie die Gleichung der Tangente an K_f im Punkt $P(2 \mid Koordinaten des Schnittpunktes dieser Tangente mit der x-Achs$		4
Gege	eben ist das Schaubild K_g einer Funktion g .		
2.3	Markieren Sie im Schaubild (siehe Lösungsblatt) zwei Werte f	ür <i>u</i> mit <i>u</i> ≥ –1,	
	welche die Gleichung $\int_{1}^{u} g(x) dx = 11$ näherungsweise lösen.		
	Erläutern Sie Ihr Vorgehen.		4

Ein Unternehmen produziert Betriebssysteme für Smartphones. Alle Smartphone-Besitzer können diese Betriebssysteme nutzen. Im September 2019 veröffentlichte das Unternehmen das Betriebssystem 4.0 als Nachfolger des Betriebssystems 3.0. Weitere Betriebssysteme sind ebenfalls am Markt und werden genutzt.

Die Funktion g mit $g(t) = -80 \cdot e^{-0.023 \cdot t} + 80$, $t \ge 0$ beschreibt durch g(t) den Anteil der 4.0-Nutzer in Prozent zum Zeitpunkt t. Dabei ist t die Zeit in Tagen, t = 0 entspricht dem 1. September 2019.

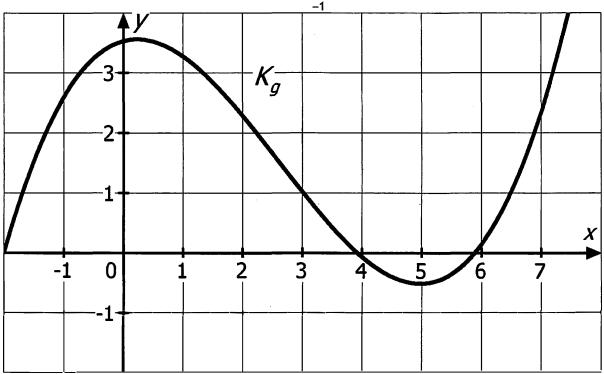
- 2.4 Skizzieren Sie das Schaubild von g. Wie viel Prozent der Smartphone-Besitzer werden niemals 4.0 nutzen? Ermitteln Sie den Anteil der 4.0-Nutzer nach 60 Tagen. Zu welchem Zeitpunkt hat die Hälfte der Smartphone-Besitzer 4.0 installiert?
- Die Funktion h mit $h(t) = a \cdot e^{b \cdot t} + 15$, $t \ge 0$, $a, b, c \ne 0$ 2.5 beschreibt durch h(t) den Anteil der 3.0-Nutzer in Prozent zum Zeitpunkt t. Dabei ist t die Zeit in Tagen, t = 0 entspricht dem 1. September 2019.
 - 75% der Smartphone-Besitzer verwendeten 3.0 zum Zeitpunkt t = 0.
 - 30 Tage nach der Einführung von 4.0 war der Nutzeranteil beider Betriebssysteme gleich.

Bestimmen Sie die Werte für a und b.

5

8

	Hauptprüfung	2020
<u> </u>	Aufgabe 2	Seite 2/2


Punkte

Bitte legen Sie dieses Blatt Ihrer Prüfungsarbeit bei.

Lösungsblatt zu Aufgabe 2.3:

Gegeben ist das Schaubild K_g einer Funktion g. Markieren Sie im Schaubild zwei

Werte für u mit $u \ge -1$, welche die Gleichung $\int_{0}^{u} g(x) dx = 11$ näherungsweise lösen.

Erläuterung des Vorgehens:

3.6

		Hauptprüfung Aufgabe 3	2020 Seite 1/1
		Adigabe 0	Punkte
_	eben ist die Funktion h mit $h(x) = 0.5e^{0.5x} - x + 1.5$, $x \in \mathbb{R}$. chaubild ist K_h .		
3.1	Zeichnen Sie K_h für $-2 \le x \le 5$.		3
3.2	Berechnen Sie die Koordinaten des Extrempunktes von K_h .		
	 Das Schaubild von K_h soll verschoben werden: a) in y-Richtung, so dass das Schaubild durch den Ursprung b) so, dass der Extrempunkt im Ursprung liegt. Geben Sie jeweils einen neuen Funktionsterm an. 	g verläuft,	8
3.3	Prüfen Sie, ob die Tangente an K_h in $x = 3$ einen positiven y -Ahat.	chsenabschnitt	4
	Schaubild K_f der Funktion f mit $f(x) = 2\cos(bx) + d$, $x \in \mathbb{R}$, ist bounkt $P(3 \mid 3)$ auf K_f liegt.	ekannt, dass	
3.4	Bestimmen Sie jeweils b und d so, a) dass K_f in P einen Hochpunkt hat. b) dass K_f in P einen Tiefpunkt hat.		4
Sei a	ab jetzt $b = \frac{\pi}{2}$ und $d = -1$.		
3.5	Bestimmen Sie die ersten beiden positiven Nullstellen von f . Berechnen Sie den Inhalt der Fläche, die K_f mit der x -Achse zwibeiden Nullstellen einschließt.	ischen diesen	8

Bestimmen Sie einen x-Wert so, dass der Funktionswert der Funktion d mit d(x) = h(x) - f(x), $x \in \mathbb{R}$ kleiner als 0,2 ist.

3

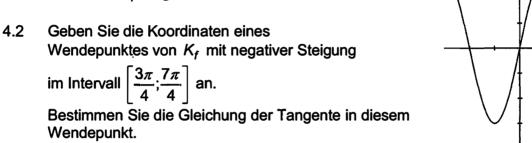
Hauptprüfung Aufgabe 4

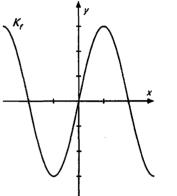
2020 Seite 1/1

Punkte

3

7


7


Name:

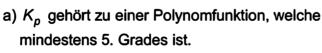
Legen Sie dieses Blatt Ihrer Prüfungsarbeit bei.

Gegeben ist die Funktion f mit $f(x) = 3\sin(2x)$, $x \in \mathbb{R}$. Das Schaubild von f ist K_f .

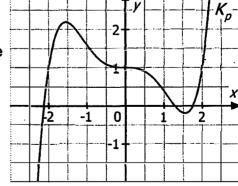
4.1 Beschriften Sie die Achsen so, dass das nebenstehende Schaubild K_f zeigt.

4.3 Das Schaubild K_g der Funktion g mit $g(x) = 3\cos(2x)$, $x \in \mathbb{R}$ schließt mit K_f und der y-Achse im ersten Quadranten eine Fläche ein.

Zeigen Sie, dass sich K_f und K_g bei $x = \frac{\pi}{8}$ schneiden.


Berechnen Sie den Inhalt der beschriebenen Fläche.

4.4 Eine zum Ursprung symmetrische Parabel 3. Ordnung schneidet die x-Achse in $x = \frac{1}{2}$ und hat im Ursprung dieselbe Steigung wie K_f .



4.5 Gegeben ist das Schaubild K_p einer Polynomfunktion p.

Begründen Sie, ob folgende Aussagen wahr oder falsch sind.

b) K_p hat genau zwei Wendepunkte im gezeichneten Abschnitt.

c)
$$p'(0) > p'(1)$$

d) Die Gleichung p(x) = 2 hat im gezeichneten Abschnitt genau drei Lösungen.